
De-normalising data for
archival preservation

Jan Rörden, University of Cologne

20th February 2015



THE
E-ARK PROJECT

IS
CO-FUNDED

BY THE
EUROPEAN 

COMMISSION
UNDER THE

ICT-PSP
PROGRAMME

www.eark‐project.eu



Content

1. Normalised databases

2. De-normalisation

3. Archival context – Problems

4. Archival context – Benefits



1. Normalised databases

• Optimised for use
– Not optimal for reading/querying.

• Designed to avoid redundancies
– Consistency – avoid anomalies
– Optimize storage requirements

• Several levels of normalisation



First normal form (1NF)
CD_ID Album Title Artist Published Track Nr. Song Title

001 Master of
Puppets

Metallica 1986 1 Battery

002 Metallica Metallica 1991 8 Nothing Else
Matters

001 Master of
Puppets

Metallica 1991 5 Disposable
Heroes

003 Zeitgeist Smashing
Pumpkins

2007 1 Doomsday
Clock



Second normal form (2NF)
CD_ID Album Title Artist Published

001 Master of Puppets Metallica 1986

002 Metallica Metallica 1991

003 Zeitgeist Smashing Pumpkins 2007

CD_ID Track Nr. Song Title

001 1 Battery

001 5 Disposable Heroes

002 8 Nothing Else Matters

003 1 Doomsday Clock



Third normal form (3NF)
CD_ID Album Title Published Artist_ID

001 Master of Puppets 1986 11

002 Metallica 1991 11

003 Zeitgeist 2007 22

Artist_ID Artist

11 Metallica

22 Smashing Pumpkins

CD_ID Track Nr. Song Title

001 1 Battery

001 5 Disposable Heroes

002 8 Nothing Else Matters

003 1 Doomsday Clock



• Normalised structure is best for usage, if
usage means that data is added
– Easy maintenance of data

• Unbiased regarding search pattern
• (rather) inefficient if data should be

retrieved
– Several/complex queries required to retrieve 

desired information



Preserve

• What should be preserved/what is
important?
– Only the content? Parts of it?
– How the content was accessed/delivered?
– Everything: content, transactions, behaviour?

– (Maybe you will also need to preserve the
application?)



Format normalisation

• Format normalisation != Database 
normalisation

• Store the database in an open format, 
suitable for preservation
– Resemble original structure
– Keep the content

• SIARD format



But:

• What happens if information is lost?
– Tables that are no longer connected?
– Context/documentation of the database is

non-existant or lost?
• Some Databases/Tables make no sense if you lack 

information.

• Why not go beyond „simply“ storing the
database?



2. De-normalisation

• Time-space tradeoff: improve „read“ 
performance
– (re-)introducing redundancy – more storage

capacity is required

– Materialised views: results of search queries
stored in tables

– Reorganize database



Example: Star schema

Atomic
record

Time

Geographical

….

Dimension n



• Require a certain view of the database:
– Which information is most important for

queries?
– Can be unflexible for varying analytics.

• Simpler queries + performance gains
• Fast aggregations
• Feed OLAP cubes



De-normalisation - questions

• How to do it?
– Manually? Automatically? Which view?

• When to do it?
– During ingest? When access is given? Never?

• How to handle BLOB/CLOB linked/inside
the database?



3. Archival context - Problems

• Can be difficult to create
• De-normalisation comes with undesired

effects:
– Original context/structure is lost
– Rendering authenticity decreases

• De-normalisation != fit for preservation



4. Archival context - Benefits

• Robust: complexity is reduced
– Easier migration
– Accessibility increased

• Archiving Service Oriented Architecture 
(SOA):
– Database snapshots are useless, if they refer 

objects that are not going to be stored with it.



• Data mining as part of the lifecycle: 
dissemination as part of the archiving 
strategy
– OLAP



OLAP

• Online Analytical Processing

• Multi-dimensional analytical queries
– Analyze multidimensional data from multiple 

perspectives.
– Get a lot of information very fast.



Thank you!

jan.roerden@uni-koeln.de


